Interactive Evolutionary Computation in Identification of Dynamical Systems
نویسندگان
چکیده
In practical system identification it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are often non-commensurable and the objective functions are explicitly/mathematically not available. In this paper, Interactive Evolutionary Computation (IEC) is used to effectively handle these identification problems. IEC is an optimization method that adopts evolutionary computation (EC) among system optimization based on subjective human evaluation. The proposed approach has been implemented in MATLAB (EAsy-IEC Toolbox) and applied to the identification of a pilot batch reactor. The results show that IEC is an efficient and comfortable method to incorporate a priori knowledge of the user into a user-guided optimization and identification problems. The developed EASy-IEC Toolbox can be downloaded from the website of the authors: http://www.fmt.vein.hu/softcomp/EAsy.
منابع مشابه
Interactive Evolutionary Computation in System Identification
In practical system identification it is often desirable to introduce additional objectives and constraints into the identification problem. In some cases, these objectives and constraints are often non-commensurable and the objective functions are explicitly/mathematically not available. In this paper, Interactive Evolutionary Computation (IEC) is used to effectively handle these identificatio...
متن کاملAn Evolutionary Algorithm for Linear Systems Identification
This paper presents a systems identification method, for discrete time linear systems, based on an evolutionary approach, which allows achieving the selection of a suitable structure and the parameters estimation, using non conventional objective functions. This algorithm incorporates parametric crossover and parametric mutation along a weighted gradient direction [1]. The performance of the pr...
متن کاملOn the Socialization of Evolutionary Art
The lack of a social context is a drawback in current Interactive Evolutionary Computation systems. In application areas where cultural characteristics are particularly important, such as visual arts and music, this problem becomes more pressing. To address this issue, we analyze variants of the traditional Interactive Evolutionary Art approach – such as multi-user, parallel and partially inter...
متن کاملSystem identification using evolutionary Markov chain Monte Carlo
System identi®cation involves determination of the functional structure of a target system that underlies the observed data. In this paper, we present a probabilistic evolutionary method that optimizes system architectures for the iden-ti®cation of unknown target systems. The method is distinguished from existing evolutionary algorithms (EAs) in that the individuals are generated from a probabi...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کامل